Flink 基础学习(二)搭建一个 "Hello World" 程序

在学习技术时,总会有一个简单程序 Demo 带着我们入门,所以参考着官网例子,带大家快速熟悉 FlinkHello World~

说明一下,项目运行的环境如下:

OS : Mac

Flink Version : 1.9

IDE : IDEA

Java Version : 1.8

下面来讲下关于环境准备,如果是 Windows 的用户,请参照每个步骤,找到适应自己的安装 or 启动方法。

1 环境准备

首先我们默认已经安装了 Jdk 1.8 和编码工具 IDEA,下面来讲如何安装 Flink 和建立脚手架。下面展示的项目代码已经放入了 Github,可以下载进行本地运行

1
$ brew install apache-flink

检查安装是否成功以及版本号

1
2
$ flink --version
Version: 1.9.0, Commit ID: 9c32ed9

接着以单机集群模式启动 Flink

1
2
3
4
$ sh /usr/local/Cellar/apache-flink/1.9.0/libexec/bin/start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host yejingqideMBP-c510.
Starting taskexecutor daemon on host yejingqideMBP-c510.

然后访问 localhost:8081 监控界面(1.9 版本更新了 UI):

1.2 创建项目

这里推荐的是使用 maven 进行构建,在命令行中输入如下内容(# 号后面是说明,请不要输入):

1
2
3
4
5
6
7
8
9
$ mvn archetype:generate \
    -DarchetypeGroupId=org.apache.flink \               # flink 的 group.id
    -DarchetypeArtifactId=flink-quickstart-java \       # flink 的 artifact.id
    -DarchetypeVersion=1.9.0 \                          # flink 的 version,以上三个请不要修改,按照默认即可
    -DgroupId=wiki-edits \                              # 项目的 group.id
    -DartifactId=wiki-edits \                           # 项目的 artifact.id
    -Dversion=0.1 \                                     # 项目的 version.id
    -Dpackage=wikiedits \                               # 项目的基础包名
    -DinteractiveMode=false                             # 是否需要和用户交互以获得输入,由于上面已经自己写了项目的参数,所以禁用了。反之请删掉 上面项目的配置,将交互模式设为 true

如果按照官方的例子填写,那么你将得到如下的项目结构:

1
2
3
4
5
6
7
8
9
10
11
$ tree wiki-edits
wiki-edits/
├── pom.xml
└── src
    └── main
        ├── java
        │   └── wikiedits
        │       ├── BatchJob.java
        │       └── StreamingJob.java
        └── resources
            └── log4j.properties

如果是自己自定义的,包结构会不一致,但是通过脚手架创立的,pom 文件中预置的依赖都将一致,引入了 Flink 基础开发相关的 API,然后通过 IDEA 打开该项目目录,就可以开始我们的 Hello world

2 开始项目

首先交代一下待会的流程,编写程序代码,启动 netcat 命令来监听 9000 端口,启动或提交 Flink 程序,最后监听日志输出信息。

2.1 项目代码

Demo 的代码作用是监听 netcat 输入的字符,然后进行聚合操作,最后输出字符统计

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public class SocketTextStreamWordCount {

    public static void main(String[] args) throws Exception {
        String hostName = "127.0.0.1";
        int port = 9000;
        // 设置运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 获取数据源
        DataStreamSource<String> stream = env.socketTextStream(hostName, port);
        // 计数
        SingleOutputStreamOperator<Tuple2<String, Integer>> sum = stream
            .flatMap((new LineSplitter()))
            .keyBy(0)
            .sum(1);
        // 输出
        sum.print();
        // 提交任务
        env.execute("Java Word from SocketTextStream Example");
    }

    public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {

        @Override
        public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {
            String[] tokens = s.toLowerCase().split("\W+");
            for (String token : tokens) {
                if (token.length() > 0) {
                    collector.collect(new Tuple2<String, Integer>(token, 1));
                }
            }
        }
    }
}

简单说明一下,上面出现了 SocketTextStream 套接字字符 数据源(Source),接着是 算子(Operator)FlatMap(一个输入源,可以输出零个或多个结果)、KeyBy(按照某字段或者 tuple 元组中某个下标进行分类) 和 sum(跟翻译一样,就是进行聚合汇总) ,最后输出

2.2 开启 tcp 长链接

为了模拟流数据,我们造的场景是不断往 9000 端口输入字符,Flink 程序添加的数据源是 SocketTextStream (套接字字符流)。

在你的终端中输入以下命令

1
$ nc -l 9000

有关 netcat 命令的用法,请看参考资料第二条,这里的作用就是打开 TCP 长链接,监听 9000 端口

刚才第一个步骤中,已经编辑好了程序代码,第二个步骤也已经启动了一个 TCP 客户端,启动 Flink 程序有两种方法:

2.3.1 本地调试

使用 IDEA 的好处很多,代码补全,语法检查和快捷键之类的。我经常使用的调试方法就是添加一个 psvmmain 方法,在里面写执行代码,最后点击绿色的启动按钮~

如果不需要调试,想直接看结果,选择第一个 Run,但有时不确定代码执行过程和出错的具体原因,可以通过第二个选项 Debug 进行调试。

这是本地开发经常使用的方法,进行结果的验证。

2.3.2 提交到 JobManager

前面我们启动的是单机集群版,启动了一个 JobManagerTaskWorker,打开的 localhost:8081 就是 JobManager 的监控面板,所以我们要通过下面的方式,将 Flink 程序提交到 JobManager

这里教一个简单的方法,我们通过 mvn clean package 进行打包后,可以在 IDEA 集成的终端标签栏下提交我们的程序:

由于每个人的绝对路径都不一样,所以我们通过 IDEA 的终端,它会自动定位到项目的路径,然后执行时填写相对路径的 jar 包名字即可

1
$ flink run -c cn.sevenyuan.wordcount.SocketTextStreamWordCount target/flink-quick-start-1.0-SNAPSHOT.jar

-c 参数是指定运行的主程序入口,接着我们去查看监控面板,可以发现任务状态已经处于监控中:

顶部信息讲的是运行程序名字、时间、时间线、配置参数等信息,底下 Name 一栏,说明该程序逻辑步骤(读取数据源,进行映射处理,使用 keyBy 和聚合运算,最后输出到【打印 sink】)

2.4 输入数据 & 验证结果

前面验证了程序正常启动,接下来我们来验证输入和输出

先来监听输出,进入 Flink 的日志目录,接着通过 tail 命令监听任务执行者 TaskWorkder(默认会启动一个任务执行者,所以编码为 0) 的日志输出

1
2
3
$ usr/local/Cellar/apache-flink/1.9.0/libexec/log
$ tail -400f flink*-taskexecutor-0*.out

接着,在 nc -l 9000 对应的终端窗口中输入如下数据:

1
2
3
4
5
$ nc -l 9000
hello world
test world
test hello
hello my world

最后就能够看到以下输出结果:

1
2
3
4
5
6
7
8
9
(hello,1)
(world,1)
(test,1)
(world,2)
(test,2)
(hello,2)
(hello,3)
(my,1)
(world,3)

每行字符以空格进行分割,然后分别进行汇总统计,得到的输出结果一致。

3 扩展阅读

如果你在官网阅览,应该也曾看到过 TimeWindow 时间窗口的例子,下面是 Demo 代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class SocketWindowWordCount {

    public static void main(String[] args) throws Exception {

        // the port to connect to
        String hostName = "127.0.0.1";
        int port = 9000;

        // get the execution environment
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // get input data by connecting to the socket
        DataStream<String> text = env.socketTextStream("localhost", port, "\n");

        // parse the data, group it, window it, and aggregate the counts
        DataStream<WordWithCount> windowCounts = text
                .flatMap(new FlatMapFunction<String, WordWithCount>() {
                    @Override
                    public void flatMap(String value, Collector<WordWithCount> out) {
                        for (String word : value.split("\s")) {
                            out.collect(new WordWithCount(word, 1L));
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .reduce(new ReduceFunction<WordWithCount>() {
                    @Override
                    public WordWithCount reduce(WordWithCount a, WordWithCount b) {
                        return new WordWithCount(a.getWord(), a.getCount() + b.getCount());
                    }
                });

        // print the results with a single thread, rather than in parallel
        windowCounts.print().setParallelism(1);

        env.execute("Socket Window WordCount");
    }
}

这里的程序代码核心点在于,比之前的多了一个算子 timeWindow,并且有两个参数,分别是时间窗口大小以及滑动窗口大小(Time size, Time slide,下面是简单的输入和输出示意图:

由于滑动窗口大小是 1s,窗口是有重合的部分,然后每秒统计自己所在窗口的数据(5s 内传输过来的数据),可以看到第 6s 时,已经舍弃掉第 0s 输入的字符串数据。

小伙伴们也可以修改一下时间窗口大小和滑动窗口大小,然后输入自定义的数据,进行不同参数的设置,看下输出效果如何,是否有达到自己的预期。

这里先初步接触一下 时间(Time)和窗口(Window)概念,之后慢慢接触逐步加深理解吧。


4 总结

本文基于 Mac 系统、 Apache Flink 1.9 版本进行了项目搭建和 Demo 编写,介绍了 Suorce -> Transformation -> Sink 的流程。简单的实现了一个字符计数器,往套接字数据源 SocketTextStream,源源不断的输入,然后进行统计出现的次数,如有疑惑或不对之处请与我讨论~


5 项目地址

https://github.com/Vip-Augus/flink-learning-note

1
git clone https://github.com/Vip-Augus/flink-learning-note

参考资料

  1. DataStream API Tutorial
  2. netcat 命令详解
  3. Flink 从 0 到 1 学习 —— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门
Java Geek Tech wechat
欢迎订阅 Java 极客技术,这里分享关于 Java 的一切。